

GameMonkey ScriptMod 1.1

What is GameMonkey Script?

 GameMonkey is a embedded scripting language that is intended for use in game and tool applications. GameMonkey is however suitable for use in any project requiring simple scripting support. GameMonkey
borrows concepts from Lua (www.lua.org), but uses syntax similar to C, making it more accessible to game programmers. GameMonkey also natively supports multithreading and the concept of states.

 What is GameMonkey ScriptMod?
 GameMonkey ScriptMod is a QMM Plugin, which allows Server Admins to define the Server behavior by Script.

 What is QMM?
 Quake3 Multi Mod (short: QMM) is a hook to the Q3 Engine and allows you to extend the Quake3 Engine functions. Check http://qmm.planetquake.gamespy.com/ for more details about QMM.

 Can I use GameMonkeyScriptMod on other Q3 Engines?
 Yes, and No. Currently we support only Enemy Territory. But we think about a release for all QMM Supported Games. QMM currently supports Quake 3 Arena, Jedi Knight II: Jedi Outcast, Jedi Knight:

http://qmm.planetquake.gamespy.com/

Academy, Return to Castle Wolfenstein, and RtCW: Enemy Territory.
 Can I use GameMonkeyScriptMod on my Windows Server?

 Yes, and No. The gmScriptMod is written in Platform independent Code. But we haven't compiled a Windows Version yet. Most Gameservers are running Linux, so atm. we don't see the need for a Windows
Version.

 Where can i get some Informations about GameMonkey?
 Here: http://www.somedude.net/gamemonkey/

How do i write a Script Function?

global PlayerList={

 {0,"0",},
 {1,"0",},
 {2,"0",},
 {3,"0",},
 {4,"0",},
 {5,"0",},
 {6,"0",},
 {7,"0",},
 {8,"0",},
 {9,"0",},
 {10,"0",},
 {11,"0",},
 {12,"0",},
 {13,"0",},
 {14,"0",},
 {15,"0",},
 {16,"0",},
 {17,"0",},
 {18,"0",},
 {19,"0",},
 };

global GAME_CLIENT_COMMAND= function(int_value, string_value, concat_value)

 {
 if(string_value=="gmsm" && concat_value=="FRIENDPASS"){PlayerList[int_value][1]=1;

 say("Login from Client: "+int_value);
 }

 };

gmScriptMod Features

 - 100% scriptable Admin Interface
 - scriptable Rcon-like Interface

 - Interface for Clan Members. (Beside Ref login)
 - Interface for Clan Friends. (Beside Ref login)

 - Access to your FileSystem by .gm Script Functions
 - Works with ALL Enemy Territory Mods (etmain/etpro/etbub/shrubmod/tce/etc.)

http://www.somedude.net/gamemonkey/

- Easy to modify. No C/C++ knowledge neccessary.
 - Change your ServerMod Scriptfile without Server restart.

 - Easy Script Syntax. Not as complicated as LUA.
 - A lot of Script Examples.

 - Fast. GameMonkey is one of the fastest Script Languages.
 - Define your own "/" commands. Example: "/ban ID", "/kick ID", "drop ID"

 - Create an individual Gameserver Mod. Personalize your Server.
 - Exchange your Script Files with other Serveradmins.

 - Client to Client Private Chat
 - IRC Like Channel Chat

What is a minimal NeelixScript.gm Script?

This is a valid mini NeelixScript.gm Script

global GAME_CLIENT_COMMAND= function(int_value, string_value, concat_value)

 {

 };
 global GAME_CLIENT_CONNECT = function(clientNum, firstTime)

 {
 };

global GAME_CONSOLE_COMMAND = function(command, concat_value){

};

gmScriptMod-1.0.zip

gmScriptMod-1.1.zip

GMSM 1.1 src (linux).rar

qmm.ini

GameMonkeyScriptReference.pdf

GameMonkey ScriptMod Command Reference

What kind of functions come with GMScriptMod?

 ServerCommands:
 rslap

example: rslap 2 700
 that will slap the player with clientnumber 2, 700 up, and his sideward, and forward motion will be randomly increased.

slap

http://enemy-territory.clan.su/Servers/gmScriptMod-1.0.zip
http://enemy-territory.clan.su/Servers/gmScriptMod-1.1.zip
http://enemy-territory.clan.su/Servers/GMSM_1.1_src-linux-.rar
http://enemy-territory.clan.su/Servers/qmm.ini
http://enemy-territory.clan.su/Servers/GameMonkeyScriptReference.pdf

example: slap 2 700
 that will slap the player with clientnumber 2, 700 up

ClientCommands:

hjump

 example: /hjump
 This will push the player into the sky, as a 'high jump'. The height is defined by a scriptfunction called 'GET_VELOCITY_Z_IMPACT'

 So you can change the ammount of units the players goes up in the air.
 Why are some script functions in upper case?

The upper case script functions are all called by GMSM.

 What gmScriptMod functions can i use?

Here is a short list with (nearly) all available Script functions. We offer you some C++ written functions, which you can use inside your script.

index:

GAMINGGONE
 GamingGoNe::sscanf

 GamingGoNe::search
 GamingGoNe::strip

 GamingGoNe::Exec
 GamingGoNe::say

 GamingGoNe::echo
 GamingGoNe::set

 GamingGoNe::cp
 GamingGoNe::cpm

 GamingGoNe::cprint
 GamingGoNe::GetValueForKey

 GamingGoNe::GetUserInfo
 GamingGoNe::getStringCvar
 GamingGoNe::getIntCvar

 GamingGoNe::strlen
 GamingGoNe::logWrite

 GamingGoNe::playsound
 GamingGoNe::include

 GamingGoNe::getConfigString
 GamingGoNe::registerCvar

 GamingGoNe::setCvar
 GamingGoNe::atoi

GM

 gm::debug
 gm::gmVersion

 gm::typeId
 gm::typeName

gm::typeRegisterOperator
 gm::typeRegisterVariable

 gm::sysCollectGarbage
 gm::sysGetMemoryUsage

 gm::sysSetDesiredMemoryUsageHard
 gm::sysSetDesiredMemoryUsageSoft
 gm::sysGetDesiredMemoryUsageHard
 gm::sysGetDesiredMemoryUsageSoft
 gm::sysSetDesiredMemoryUsageAuto
 gm::sysGetStatsGCNumFullCollects

 gm::sysGetStatsGCNumIncCollects
 gm::sysGetStatsGCNumWarnings

 gm::sysIsGCRunning
 gm::sysTime

 gm::doString
 gm::globals

 gm::threadTime
 gm::threadId

 gm::threadAllIds
 gm::threadKill

 gm::threadKillAll
 gm::thread

 gm::yield
 gm::exit

 gm::assert
 gm::sleep

 gm::signal
 gm::block
 gm::stateSet

 gm::stateSetOnThread
 gm::stateGet

 gm::stateGetLast
 gm::stateSetExitFunction

 gm::tableCount
 gm::tableDuplicate

 gm::print
 gm::format

 sscanf
 Brief: Allows you to have a ssanf like function

 Param: char string
 Param: char searchPattern

 Param: int varType
 Return: char scannedVar

 search
 Brief: Allows you to search a string in a string

 Param: char searchIn
 Param: char searchString

Return: char match
 strip

 Brief: removes the color code from a player/string
 Param: char string

 Return: char stripped_string
 Exec

 Brief: Exec will execute a system command
 Param: string params will be concatinated together with a single space to form the final system command string

 Return: integer value returned from system exec call, -1 on error
 say

 Brief: say will send a console say message
 Param: char string

 Return: null
 echo

 Brief: echo will echo a string to the serverconsole output
 Param: char string

 Return: null
 set

 Brief: set param will be concatinated and piped to the gameserver using EXEC_APPEND
 Param: string

 Return: null
 cp

 Brief: this function will send string as a Center Print message to 'clientnum'
 Param: int clientNum

 Param: char string
 Return: null

 cpm
 Brief: this function will send string to clientnum in CPM mode

 Param: int clientNum
 Param: char string

 Return: null
 cprint

 Brief: this function will send string to clientnum in print mode(console)
 Param: int clientNum

 Param: char string
 Return: null

 GetValueForKey
 Brief: this function will get a certain value from the userinfo string, eg 'GetValueForKey(UserInfoString,"ip")'

 Param: char userinfostring
 Param: char value

 Return: char value
 GetUserInfo

 Brief: this function will return a userinfostring
 Param: char string

 Return: char userinfostring
 getStringCvar

 Brief: this function will return the string of the cvar 'var_name'

Param: char string
 Return: char cvar_value

 getIntCvar
 Brief: this function will return the integer of the cvar 'var_name'

 Param: char string
 Return: integer cvar_value

 strlen
 Brief: this function will return the length of the string

 Param: char string
 Return: int length
 logWrite

 Brief: this function will write 'string' in the game logfile
 Param: char string

 Return: null
 playsound

 Brief: this function will play the sound 'string' using the clientcommand mu_play
 Param: char pathToSound

 Return: null
 include

 Brief: This function will include a file with 'string' as the filename
 Param: char fileName

 Return: null
 getConfigString

 Brief: This function gets the config string of a client (CS_PLAYERS + clientNum)
 Param: int clientNum

 Return: null
 registerCvar
 Brief: This function registers a server Cvar

 Param: char cvarName
 Return: null

 setCvar
 Brief: This function sets a server Cvar

 Param: char cvarName
 Param: char Value

 Return: null
 atoi

 Brief: This function converts a string to an integer
 Param: char string

 Return: integer
 gm

Brief: functions in the gm lib are all global scope

 debug
 Brief: debug will cause a the debugger to break at this point while running.

gmVersion

 Brief: gmVersion will return the gmMachine version string. version string is major type . minor type as a string and was added at version 1.1

Return: string
 typeId

 Brief: typeId will return the type id of the passed var
 Param: var

 Return: integer type
 typeName

 Brief: typeName will return the type name of the passed var
 Param: var

 Return: string
 typeRegisterOperator

 Brief: typeRegisterOperator will register an operator for a type
 Param: int typeid

 Param: string operator name is one of "getdot", "setdot", "getind", "setind", "add", "sub", "mul", "div", "mod", "inc", "dec", "bitor", "bitxor", "bitand", "shiftleft", "shiftright", "bitinv", "lt", "gt", "lte", "gte",
"eq", "neq", "neg", "pos", "not"

 Param: function
 Return: 1 on success, otherwise 0

 typeRegisterVariable
 Brief: typeRegisterVariable will register a variable with a type such that (type).varname will return the variable

 Param: int typeid
 Param: string var name

 Param: var
 Return: 1 on success, otherwise 0

 sysCollectGarbage
 Brief: sysCollectGarbage will run the garbage collector iff the current mem used is over the desired mem used

 Param: forceFullCollect (false) Optionally perform full garbage collection immediately if garbage collection is not disabled.
 Return: 1 if the gc was run, 0 otherwise

 sysGetMemoryUsage
 Brief: sysGetMemoryUsage will return the current memory used in bytes

 Return: int memory usage
 sysSetDesiredMemoryUsageHard

 Brief: sysSetDesiredMemoryUsageHard will set the desired memory useage in bytes. when this is exceeded the garbage collector will be run.
 Param: int desired mem usage in bytes

 sysSetDesiredMemoryUsageSoft
 Brief: sysSetDesiredMemoryUsageSoft will set the desired memory useage in bytes. when this is exceeded the garbage collector will be run.

 Param: int desired mem usage in bytes
 sysGetDesiredMemoryUsageHard

 Brief: sysGetDesiredMemoryUsageHard will get the desired memory useage in bytes. Note that this value is used to start garbage collection, it is not a strict limit.
 Return: int Desired memory usage in bytes.

 sysGetDesiredMemoryUsageSoft
 Brief: sysGetDesiredMemoryUsageSoft will get the desired memory useage in bytes. Note that this value is used to start garbage collection, it is not a strict limit.

 Return: int Desired memory usage in bytes.
 sysSetDesiredMemoryUsageAuto

 Brief: sysSetDesiredMemoryUsageAuto will enable auto adjustment of the memory limit(s) for subsequent garbage collections.
 Param: int enable or disable flag

 sysGetStatsGCNumFullCollects
 Brief: sysGetStatsGCNumFullCollects Return the number of times full garbage collection has occured.

 Return: int Number of times full collect has occured.

sysGetStatsGCNumIncCollects
 Brief: sysGetStatsGCNumIncCollects Return the number of times incremental garbage collection has occured. This number may increase in twos as the GC has multiple phases which appear as restarts.

 Return: int Number of times incremental collect has occured.
 sysGetStatsGCNumWarnings

 Brief: sysGetStatsGCNumWarnings Return the number of warnings because the GC or VM thought the GC was poorly configured. If this number is large and growing rapidly, the GC soft and hard limits
need to be configured better. Do not be concerned if this number grows slowly.

 Return: int Number of warnings garbage collect has generated.
 sysIsGCRunning

 Brief: Returns true if GC is running a cycle.
 sysTime

 Brief: sysTime will return the machine time in milli seconds
 Return: int

 doString
 Brief: doString will execute the passed gm script

 Param: string script
 Param: int optional (1) set as true and the string will execute before returning to this thread

 Param: ref optional (null) set 'this'
 Return: int thread id of thread created for string execution

 globals
 Brief: globals will return the globals table

 Return: table containing all global variables
 threadTime

 Brief: threadTime will return the thread execution time in milliseconds
 Return: int

 threadId
 Brief: threadId will return the thread id of the current executing script

 Return: int
 threadAllIds

 Brief: threadIds returns a table of thread Ids
 Return: table of thread Ids

 threadKill
 Brief: threadKill will kill the thread with the given id

 Param: int threadId optional (0) will kill this thread
 threadKillAll

 Brief: threadKillAll will kill all the threads except the current one
 Param: bool optional (false) will kill this thread if true

 thread
 Brief: thread will start a new thread

 Param: function entry point of the thread
 Param: ... parameters to pass to the entry function

 Return: int threadid
 yield

 Brief: yield will hand execution control to the next thread
 exit

 Brief: exit will kill this thread
 assert

 Brief: assert

Param: int expression if true, will do nothing, if false, will cause an exception
 sleep

 Brief: sleep will sleep this thread for the given number of seconds
 Param: int\float seconds

 signal
 Brief: signal will signal the given variable, this will unblock dest threads that are blocked on the same variable.

 Param: var
 Param: int destThreadId optional (0) 0 will signal all threads

 block
 Brief: block will block on all passed vars, execution will halt until another thread signals one of the block variables. Will yield on null and return null.

 Param: ... vars
 Return: the unblocking var

 stateSet
 Brief: stateSet will collapse the stack to nothing, and push the passed functions.

 Param: function new state function to execute
 Param: ... params for new state function

 stateSetOnThread
 Brief: stateSetOnThread will collapse the stack of the given thread id to nothing, and push the passed functions.

 Param: int thread id
 Param: function new state function to execute

 Param: ... params for new state function
 stateGet

 Brief: stateGet will return the function on the bottom of this threads execution stack iff it was pushed using stateSet
 Param: a_threadId Optional Id of thread to get state on. \reutrn function \ null

 stateGetLast
 Brief: stateGetLast will return the last state function of this thread

 Param: a_threadId Optional Id of thread to get last state on. \reutrn function \ null
 stateSetExitFunction

 Brief: stateSetExitFunction will set an exit function for this state, that will be called with no parameters if this thread switches state
 Param: function

 tableCount
 Brief: tableCount will return the number of elements in a table object

 Param: table
 Return: int

 tableDuplicate
 Brief: tableDuplicate will duplicate the passed table object

 Param: table
 Return: table
 print

 Brief: print will print the given vars to the print handler. passed strings are concatinated together with a seperating space.
 Param: ... strings

 format
 Brief: format (like sprintf, but returns a string) %d, %s, %f, %c, %b, %x, %e

 Param: string

GameMonkey ScriptMod 1.1 Installation Help

Step by Step Help

1. Go to your .etwolf folder and create a new folder called: "gmScriptMod"
 !ATTENTION! The Folder Name is case sensitiv!

2. Save in the gmScriptMod folder the .gm files.

3. Change the Default Passwords in the NeelixScript.gm File.

4. Install QMM

4. a) Rename the existing qagame.mp.i386.so file to qmm_qagame.mp.i386.so.

 4. b) Place qmm.so from the .tar.gz you downloaded into the mod directory and rename it to qagame.mp.i386.so.
 Your Folder should now look like this:

4. c) Place pdb.so and qmm.ini from the .zip you downloaded into the root game directory (where the server binary is located).

4. d) Configure QMM (see Configuration File (qmm.ini) regarding a setting that must be set for Enemy Territory).

Source

Copyright etpro.de © 2008-2018

http://h1416017.stratoserver.net/gmScriptMod/

